
Transform your
development workflow

with thin cloning
Nick Meyer @ Academia.edu

PGConf Europe 2025, Riga Latvia

Transform your
development workflow

with thin cloning
Nick Meyer @ Academia.edu

PGConf Europe 2025, Riga Latvia

“It works on my laptop”

“It works on my laptop” and on prod

“Let’s ship your laptop”

What about data?

A bit about me (Nick Meyer)

● Team lead of Platform Engineering
● @ Academia.edu

○ San Francisco, CA, USA
○ Accelerating the world’s research
○ Open access

● https://github.com/aristocrates

https://www.academia.edu/
https://github.com/aristocrates

Slides: https://github.com/aristocrates/pgconf_eu_2025_talk

https://github.com/aristocrates/pgconf_eu_2025_talk

Happier devs move faster

https://survey.stackoverflow.co/2025/technology#1-databases

https://survey.stackoverflow.co/2025/technology#1-databases

The dev env struggle

Development data difficulties

● Shared vs many DBs
● Schema drift
● Realistic data

○ Factories/fixtures
○ Subsetting + anonymization

● Scale
○ 10 TB vs 1 MB
○ How many uploads does one user have?

maintenance

platform team

Development data difficulties

To test any of [Team 1]’s changes:

✓ Download some file from S3
✓ Set some ENV_VAR=1
✓ Run these 20 commands

platform team

more
maintenance

Staging environment

● Cost (cutting)
○ “Intentional differences” with prod

● Shared DB?
● When it breaks, who fixes it?

even more
maintenance

platform team

Anti-pattern: test in prod

Broken?

Think of
theory

Observe
prod

Deploy to
prod

!

What do we want?

Database for development:

● Low cost
● Low maintenance
● Matches prod

Solution:
DB thin cloning

Cloning production

production

cloneDevelopment
read + write

production

Cloning production, scalably

production

cloneDevelopment

production

Development

… …
clone

read + write

read + write

Development clone
read + write

Copy on write

● Storage or filesystem layer
○ e.g. ZFS, LVM, k8s + OpenEBS

● Copy on write clone of $PGDATA
● Run postgres off of the clone

○ Separate compute/container
○ Start the server, promote

● Get a connection string

=> writable “thin clone” of the DB

Creating new clones:

● Fast (5 TB DB, 2.5 seconds)
● Only takes more storage after writes

postgres clone

Postgres (or “postgres compatible”) thin cloning options

● DBLab Engine
● Xata
● Amazon Aurora
● Neon
● TigerData

“Branching”

https://postgres.ai/products/dblab_engine
https://xata.io/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://neon.com/docs/introduction/branching
https://www.tigerdata.com/blog/postgres-for-agents

Architecture - “native”

● Xata
● Neon
● Amazon Aurora
● TigerData

production

Thin Clone

Thin Clone

…

Architecture - physical replica

● DBLab Engine

Advantages:

● Sync performance
● Exact state of DB

○ even corruption

production

Backup Storage
(e.g. S3, etc)

Physical
Replica

Thin Clone

…

0 5,11,17,23 * * *

Update schedule:

Architecture - logical replica

● Xata
○ Anonymization pgstream

● DBLab Engine

Advantages:

● Flexibility
● Anonymization

production
Logical
Replica

pg_dump
pgstream
pgcopydb

Thin Clone

…

https://github.com/xataio/pgstream/

What Academia.edu uses

● DBLab Engine open source (physical approach)
● Aurora (testing DB upgrades)
● Testing Xata (logical approach)
● A script to get clones

○ Calls clone APIs, templates dev DB config

● An env var to use them

http://academia.edu

Simulated demo

$ script/dbclone --all

Simulated demo

$ script/dbclone --all

Requesting clone of main…

Requesting clone of bibliography...

bibliography cloned in 2.4 seconds

main cloned in 2.7 seconds

Simulated demo

$ DBCLONE=1 bundle exec rails c

Loading development environment (Rails)

1:(main)>

Simulated demo

$ DBCLONE=1 bundle exec rails c

Loading development environment (Rails)

1:(main)> Authorship.last.id

Simulated demo

$ DBCLONE=1 bundle exec rails c

Loading development environment (Rails)

1:(main)> Authorship.last.id

(11.4ms) SELECT "authorships".* FROM
"authorships" ORDER BY "authorships"."id"
DESC LIMIT 1

=> 162_088_564

Simulated demo

$ DBCLONE=1 bundle exec rails c

2:(main)> Authorship.count

Simulated demo

$ DBCLONE=1 bundle exec rails c

2:(main)> Authorship.count

(...) SELECT COUNT(*) FROM "authorships"

Schema differences

Partitioning

\d+ notifications

[...]

Partition key: RANGE (created_at)

Partitions: notifications_2025_09 FOR VALUES FROM ('2025-09-01
00:00:00') TO ('2025-10-01 00:00:00'),

 notifications_2025_10 FOR VALUES FROM ('2025-10-01
00:00:00') TO ('2025-11-01 00:00:00'),

 notifications_2025_11 FOR VALUES FROM ('2025-11-01
00:00:00') TO ('2025-12-01 00:00:00')

Partitioning in development

Cron?

prod

dev

2025-09 2025-10 2025-11

2025-09 2025-10

dev2 2025-09 2025-10 2025-11

dev3 2025-122025-10 2025-11

Partitioning in development

Default partition?

prod

dev

2025-09 2025-10 2025-11

Default partition

Partitioning in development

Just a normal table in dev?

prod

dev

2025-09 2025-10 2025-11

Normal table

Partitioning in development

Or: thin clone

prod

dev

2025-09 2025-10 2025-11

2025-09 2025-10 2025-11

Slow queries

Fast in dev, slow in prod

● Scale of data
● Bad query plans
● Bloat, VACUUM issues

Debugging a slow INSERT, UPDATE, or DELETE

EXPLAIN ANALYZE

DELETE FROM [table] WHERE [...] ;

Debugging a slow INSERT, UPDATE, or DELETE

BEGIN;

EXPLAIN ANALYZE

DELETE FROM [table] WHERE [...] ;

-- capture output

ROLLBACK;

!

Debugging a slow INSERT, UPDATE, or DELETE

BEGIN;

EXPLAIN ANALYZE

DELETE FROM [table] WHERE [...] ;

-- capture output

ROLLBACK;

Risks:
● Locking
● Bloat, WAL writes
● Mistakes/autocommit

Thin cloning advantages: query performance

● Safer EXPLAIN ANALYZE on DML
● What if you don’t have the query?

○ ORM
○ Statement constructed at runtime

● Go to web page in dev, prod queries

Testing a fix

query planner

profit?
Statistics?
Index?
Config?

0 -> 1 Product

The state of academic publishing

● 17th century tech in the internet age
● Slow peer review, slow time to publish
● How can we speed it up?

Manuscript pipeline: idealized

Submission Desk check Peer review

Reject

Publish

Revisions

Manuscript pipeline: idealized

Peer review

Revisions

Just revise and
resubmit

Manuscript pipeline: reality

Author revision

Review
revisions

Reviewer
revision desk

check

Reviewer
revision desk

check

Review
revisions:
feedback

Editorial desk
check

Advanced
editor signoff

Decision

RejectPublish

Advanced
signoff needed?

Feedback cycles

Engineers Editorial Team

Thin cloning has been revolutionary for us

● Replicating complex bugs
● Awareness of query performance
● Iterating faster

Challenges and advice

Latency is key

cloneDevelopment

read + write

[...]

HTTP

Latency is key

Want dev app and
dev db in the same
region

Clone

Performance

● Has the dataset of prod
● Less compute power, memory than prod
● Some development workflows can be slower
● Thin clones are not ideal for benchmarking
● Some ZFS recordsize tuning

Data in places other than postgres

● S3
● Elasticsearch
● Redis
● Dynamo
● etc

select id,
file_name
from documents
limit 1;
[RECORD 1]-+---------------
id | 123456789
file_name |lorem_ipsum.pdf

S3

Data in places other than postgres

● Custom workarounds for dev
○ “Intentionally different”

● Pareto principle, 80/20

PII + Compliance

“dev == prod” approach

● Lock down dev access
● Avoid DBs that are too sensitive

PII + Compliance

Data anonymization approach

● Logical + anonymize before it reaches dev
○ pgstream + anonymization

● Physical + Extension
○ PostgreSQL Anonymizer
○ Dynamic masking

https://postgresql-anonymizer.readthedocs.io/en/stable/dynamic_masking/

Closing thoughts

Why just postgres?

● I’m not aware of any key technical reasons
● Strong community + ecosystem
● I wish I could use this on every “database”

Summary

● Thin cloning was game-changing for us
● Questions?
● Feedback?

Feedback: https://www.postgresql.eu/events/pgconfeu2025/feedback/7102/

https://www.postgresql.eu/events/pgconfeu2025/feedback/7102/

Appendix

Image credits

https://commons.wikimedia.org/wiki/File:Atlas_%28mythology%29.svg

● Deed - CC0 1.0 Universal - Creative Commons

https://openclipart.org/detail/238859/magical-unicorn-silhouette-no-stars

● Deed - CC0 1.0 Universal - Creative Commons

https://en.wikipedia.org/wiki/File:Tyrannosaurus_Rex_Holotype.jpg

● Deed - Attribution-ShareAlike 3.0 Unported - Creative Commons

https://openclipart.org/detail/335938/political-map-of-the-countries-of-the-world-in-2018-neutral-colors

● Deed - CC0 1.0 Universal - Creative Commons

https://en.wikipedia.org/wiki/File:Rube_Goldberg%27s_%22Self-Operating_Napkin%22_(cropped).gif

● Public domain

https://commons.wikimedia.org/wiki/File:Atlas_%28mythology%29.svg
https://creativecommons.org/publicdomain/zero/1.0/
https://openclipart.org/detail/238859/magical-unicorn-silhouette-no-stars
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Tyrannosaurus_Rex_Holotype.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://openclipart.org/detail/335938/political-map-of-the-countries-of-the-world-in-2018-neutral-colors
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Rube_Goldberg%27s_%22Self-Operating_Napkin%22_(cropped).gif

