Transform your
development workflow
with thin cloning

Nick Meyer @ Academia.edu

PGConf Europe 2025, Riga Latvia

Transform your
development workflow
with thin cloning

Nick Meyer @ Academia.edu

PGConf Europe 2025, Riga Latvia

“It works on my laptop”

“It works on my laptop” and on prod

“Let’s ship your laptop”

>

What about data?

A bit about me (Nick Meyer)

e Team lead of Platform Engineering

e @ Academia.edu
o San Francisco, CA, USA
o Accelerating the world’s research
o Open access

e https://github.com/aristocrates

https://www.academia.edu/
https://github.com/aristocrates

Slides: https://github.com/aristocrates/pgconf_eu_2025_talk

https://github.com/aristocrates/pgconf_eu_2025_talk

A | Happier devs move faster

Most popular technologies / All Respondents

Databases

PostgreSQL

MySQL

SQLite

Microsoft SQL Server

Redis

MongoDB

MariaDB

Elasticsearch

https://survey.stackoverflow.co/2025/technology#1-databases

https://survey.stackoverflow.co/2025/technology#1-databases

T
h
e
d
e
V
e
n
VS
t
r
u
Y
Y
le

Development data difficulties

e Shared vs many DBs
Schema drift

e Realistic data

o Factories/fixtures

o Subsetting + anonymization
e Scale

o 10 TBvs1MB

o How many uploads does one user have?

maintenance

platform team

Development data difficulties

To test any of [Team 1]'s changes: more

v Download some file from S3 maintenance
v Set some ENV_VAR=1
v Run these 20 commands

platform team

o
W
w

Staging environment

e Cost (cutting)

o “Intentional differences” with prod even more
e Shared DB? maintenance

e When it breaks, who fixes it?

platform team

Anti-pattern: test in prod

_—

Broken?

&)

—

Think of
theory \v
Deploy to
prod
Observe
orod J/I\

What do we want?

Database for development:

e Low cost
e Low maintenance
e Matches prod

D
B
X
h
in.
o
n
: in
Y

Cloning production

O

O

O

Development

production

read + write

>

production

Cloning production, scalably
3
production
5 O

o O N
(T read + write >

Development O

O read + write —
Development > clone

read + write >

Development

Copy on write

Storage or filesystem layer
o e.g. ZFS, LVM, k8s + OpenEBS

Copy on write clone of $PGDATA
Run postgres off of the clone

o Separate compute/container
o Start the server, promote

Get a connection string

=> writable “thin clone” of the DB

Creating new clones:

e Fast (5 TB DB, 2.5 seconds)
e Only takes more storage after writes

<& *
* *
* *
* *
* *
. N
* *
postgres |e .
* *
* *
* *
* *

Postgres (or “postgres compatible”) thin cloning options

DBLab Engine “Branching”
Xata
Amazon Aurora

Neon
TigerData \

https://postgres.ai/products/dblab_engine
https://xata.io/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Clone.html
https://neon.com/docs/introduction/branching
https://www.tigerdata.com/blog/postgres-for-agents

Architecture - “native”

Xata

Neon

Amazon Aurora
TigerData

production

N
]

Thin Clone

~N

T
S

Thin Clone
v

. _ . . Backup Storage
Architecture - physical replica eg.53, et0)
Update schedule:

e DBLab Engine 0 5,11,17,23 * * *

Advantages:
Physical

production Replica

e Sync performance

e Exact state of DB

O even corruption
Thin Clone

Architecture - logical replica

pg-dump
o Xata pgstream
o Anonymization pgstream pgcopydb
e DBLab Engine
oroduction > Ilizgi“cca;
Advantages: P
e Flexibility

® Anonymization Thin Clone

https://github.com/xataio/pgstream/

What Academia.edu uses

DBLab Engine open source (physical approach)
Aurora (testing DB upgrades)
Testing Xata (logical approach)

A script to get clones
o Calls clone APIs, templates dev DB config

e An env var to use them

http://academia.edu

Simulated demo

$ script/dbclone --all

Simulated demo

$ script/dbclone --all

Requesting clone of main..
Requesting clone of bibliography...
bibliography cloned in 2.4 seconds

maln cloned 1n 2.7 seconds

Simulated demo

S DBCLONE=1 bundle exec rails c
Loadling development environment (Rails)

1l: (main) >

Simulated demo

S DBCLONE=1 bundle exec rails c
Loadling development environment (Rails)

l: (main)> Authorship.last.id

Simulated demo

S DBCLONE=1 bundle exec rails c
Loadling development environment (Rails)
l: (main)> Authorship.last.id

(11.4ms) SELECT "authorships".* FROM
"authorships" ORDER BY "authorships"."id"
DESC LIMIT 1

=> 162 088 564

Simulated demo

S DBCLONE=1 bundle exec rails c

2: (main)> Authorship.count

Simulated demo

S DBCLONE=1 bundle exec rails c
2: (main)> Authorship.count

(...) SELECT COUNT (*) FROM "authorships"

N

S
C
h
e
m
a
d
iffer
e
n
C
e
S

Partitioning

\d+ notifications
[...]
Partition key: RANGE (created at)

Partitions: notifications 2025 09 FOR VALUES FROM ('2025-09-01
00:00:00") TO ('2025-10-01 00:00:00"),

notifications 2025 10 FOR VALUES FROM ('2025-10-01
00:00:00") TO ('2025-11-01 00:00:00"),

notifications_2025_11 FOR VALUES FROM ('2025-11-01
00:00:00") TO ('2025-12-01 00:00:00")

Partitioning in development

Cron?

prod 2025-09 || 2025-10 2025-11

dev 2025-09 || 2025-10

dev? 2025-09 || 2025-10 || 2025-11

deV3 2025-10 2025-11 2025-12

Partitioning in development

Default partition?

prod

dev

2025-09

2025-10

2025-11

Default partition

Partitioning in development

Just a normal table in dev?

prod 2025-09 || 2025-10 2025-11

dev Normal table

Partitioning in development

Or: thin clone

prod 2025-09 || 2025-10 2025-11

d ev 2025-09 || 2025-10 2025-11

S
lo
W
q
ue
r
ie
S

Fast in dev, slow in prod

e Scale of data
e Bad query plans
e Bloat, VACUUM issues

Debugging a slow INSERT, UPDATE, or DELETE

EXPLAIN ANALYZE
DELETE FROM [table] WHERE [...] 7

Debugging a slow INSERT, UPDATE, or DELETE

BEGIN;

EXPLAIN ANALYZE

DELETE FROM [table] WHERE [...]
—— capture output

ROLLBACK;

Debugging a slow INSERT, UPDATE, or DELETE

BEGIN;

Risks:

e Locking

e Bloat, WAL writes

e Mistakes/autocommit

EXPLAIN ANALYZE
DELETE FROM [table] WHERE [...] ;

—-— capture output

ROLLBACK;

Thin cloning advantages: query performance

e Safer EXPLAIN ANALYZE on DML

e What if you don’t have the query?
o ORM
o Statement constructed at runtime

e Go to web page in dev, prod queries

Testing a fix

query planner

Statistics? ;
Index? —> |t
Config? L

0
->
1
P
rod
u
C
t

The state of academic publishing

e 17th century tech in the internet age
e Slow peer review, slow time to publish
e How can we speed it up?

Manuscript pipeline: idealized

C Reject) Revisions

Submission Desk check Peer review H Publish

Manuscript pipeline: idealized

Just revise and
resubmit

Peer review

v 1
[t)

Manuscript pipeline: reality Publish < Reject >

N\
Reviewer
Author revision revision desk IR .
) check S ., N
A \ Review ngiewer Decision
. revision desk
revisions
check
Review Advanced
;eVIdS;Donsk: signoff needed?
eedbac Advanced
Editorial desk editor signoff

check

Feedback cycles

Engineers ‘ Editorial Team

N i

Thin cloning has been revolutionary for us

e Replicating complex bugs
e Awareness of query performance
e |Iterating faster

C
h
a
11
e
n
Y
es a
n
d
a
d
V
T
e

Latency is key

HTTP

>

Development

read + write

<€
<€

>
>

[...]

clone

Latency is key

Want dev app and
dev db in the same
region

& -

pgBackRest
bucket

A

[=

postgres

|
Clone

]

Development

Performance

Has the dataset of prod

Less compute power, memory than prod
Some development workflows can be slower
Thin clones are not ideal for benchmarking
Some ZFS recordsize tuning

Data in places other than postgres

S3
Elasticsearch
Redis
Dynamo

etc

select 1id,

file name

from documents
limit 1;

[RECORD 1]-4-——-—--————————

id | 123456789
file name | lorem ipsum.pdf

e
>
S3
A

Data in places other than postgres

e Custom workarounds for dev
o “Intentionally different”

e Pareto principle, 80/20

PII + Compliance

“dev == prod” approach

e Lock down dev access
e Avoid DBs that are too sensitive

PII + Compliance

Data anonymization approach

e Logical + anonymize before it reaches dev
O pgstream + anonymization
e Physical + Extension

o PostgreSQL Anonymizer
o Dynamic masking

https://postgresql-anonymizer.readthedocs.io/en/stable/dynamic_masking/

C
lo
S
in
Y
th
o
u
Y
h
t
S

Why just postgres?

e I'm not aware of any key technical reasons
e Strong community + ecosystem
e | wish | could use this on every “database”

Summary

e Thin cloning was game-changing for us
® Questions?
e Feedback?

Feedback: https://www.postgresqgl.eu/events/pgconfeu2025/feedback/7102/

https://www.postgresql.eu/events/pgconfeu2025/feedback/7102/

Appendix

Image credits

https://commons.wikimedia.org/wiki/File:Atlas_%28mythology%29.sv

e Deed - CCO 1.0 Universal - Creative Commons

https://openclipart.org/detail/238859/magical-unicorn-silhouette-no-stars

e Deed - CCO 1.0 Universal - Creative Commons

https://en.wikipedia.org/wiki/File:Tyrannosaurus_Rex_Holotype.jpg

e Deed - Attribution-ShareAlike 3.0 Unported - Creative Commons

https://openclipart.org/detail/335938/political-map-of-the-countries-of-the-world-in-2018-neutral-colors

e Public domain

https://commons.wikimedia.org/wiki/File:Atlas_%28mythology%29.svg
https://creativecommons.org/publicdomain/zero/1.0/
https://openclipart.org/detail/238859/magical-unicorn-silhouette-no-stars
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Tyrannosaurus_Rex_Holotype.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://openclipart.org/detail/335938/political-map-of-the-countries-of-the-world-in-2018-neutral-colors
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Rube_Goldberg%27s_%22Self-Operating_Napkin%22_(cropped).gif

